Comparison of model potentials for molecular-dynamics simulations of silica.

نویسندگان

  • Daniel Herzbach
  • Kurt Binder
  • Martin H Müser
چکیده

Structural, thermomechanical, and dynamic properties of pure silica SiO2 are calculated with three different model potentials, namely, the potential suggested by van Beest, Kramer, and van Santen (BKS) [Phys. Rev. Lett. 64, 1955 (1990)], the fluctuating-charge potential with a Morse stretch term for the short-range interactions proposed by Demiralp, Cagin, and Goddard (DCG)[Phys. Rev. Lett. 82, 1708 (1999)], and a polarizable force field proposed by Tangney and Scandolo (TS) [J. Chem. Phys. 117, 8898 (2002)]. The DCG potential had to be modified due to flaws in the original treatment. While BKS reproduces many thermomechanical properties of different polymorphs rather accurately, it also shows qualitatively wrong trends concerning the phononic density of states, an absence of the experimentally observed anomaly in the c/a ratio at the quartz alpha-beta transition, pathological instabilities in the beta-cristobalite phase, and a vastly overestimated transition pressure for the stishovite I --> II transition. These shortcomings are only partially remedied by the modified DCG potential but greatly improved by the TS potential. DCG and TS both reproduce a pressure-induced transition from alpha-quartz to quartz II, predicted theoretically based on the BKS potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach

In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...

متن کامل

Nonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach

In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...

متن کامل

Planar Molecular Dynamics Simulation of Au Clusters in Pushing Process

Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...

متن کامل

Molecular Dynamics Simulations of Freezing Behavior of Pure Water and 14% Water-NaCl Mixture Using the Coarse-Grained Model

 We performed molecular dynamics simulations using the coarse-grained model to study the freezing behavior of pure water and 14% water-salt mixture in a wide range of temperatures for a very long time around 50 nanoseconds. For the salty water, an interface in nanoscale was used. For both systems, the f...

متن کامل

شبیه سازی خواص الاستیک نانو کامپوزیت Al-SiC با استفاده از روش دینامیک مولکولی

In the present work, molecular dynamics simulation method was used for determining Young's modulus, Shear modulus and Poisson’s ratio of Al-SiC nanocomposites, with different volume fractions of the reinforcements. For simulation, the open source package, LAMMPS, was used. After putting Aluminum and Silicon Carbide atoms in their initial positions, interatomic potentials between them were defi...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 123 12  شماره 

صفحات  -

تاریخ انتشار 2005